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Quantum mechanical ordering problem for observables which 
are linear in momentum 

F J Bloore and I R Ghobrial 
Department of Applied Mathematics and Theoretical Physics. The University. Liverpool 
L69 3BX. U K  

Received 7 July 1975 

Abstract. Starting with Segal's postulates for quantum mechanics, augmented by the postu- 
late that the commutators of the free Hamiltonian with position observables are canonical, 
we prove that the quantum mechanical observable Q(X), which corresponds to the function 
C ( X )  I X'(q)p ,  on phase space in classical mechanics, is equal to the anticommutator 
i{Q(X'), Q(p,)) .  In coordinate free language, this means that Q(4X) = f{Q(4), Q ( X ) }  for any 
scalar field 4 and any vector field X on the configuration space. 

1. The algebra of quantum mechanical observables 

Any classical dynamical system possesses a configuration space M .  We suppose that 
M is a C" manifold. The Hamiltonian $gil(q)qi4J provides a metric g which makes 
M Riemannian. Denote by T'"M the space of symmetric contravariant real C" tensor 
fields S of valence v(S)  = s on M ,  (s = 0 , 1 , 2 . .  .), and denote by d the direct sum 

z 

sd = 0 T'"M. 
s = o  

To each S E T("M corresponds the classical mechanical observable (CMO) or function on 
phase space, given in a local coordinate patch by 

. .  
C(S) = S". y q ) p i , p i *  . . . pi; 

This function is homogeneous of degree s in momentum. The functions C(S) form a 
Lie algebra under the Poisson bracket 

Here [ S ,  TI is a symmetric tensor field of valence u ( S ) + v ( T ) -  1 called the Schouten 
concomitant of S and T, and the set d is a Lie algebra with the Schouten concomitant 
as Lie product. For further details see Sommers (1973) or Bloore (1975). We set up the 
quantization of this dynamical system as follows. 

Following Segal(l960) we postulate that to each S E d there is a quantum mechanical 
observable (QMO) Q(S),  and we consider the associative but not commutative algebra 
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over C of polynomials in the symbols Q(S). making the following identifications : 

P1 Q(cV = cQ(S) C € C  

P2 

P3 Q(W) = Q(4)Q($) 4, $ E T'O'M 

P4 

Q(S + T )  = Q(S)+Q(T) 

[Q(x),  Q(+)l = - iQ([x, 41) 
[Q(X), Q(V1 = - iQ([X, YI)  X ,  Y E  T ' l 'M.  

We also assume the map Q is faithful in the sense 

PO Q(S) = 0 * S = 0. 

As we shall see. these postulates do not prescribe uniquely Q($X) in terms of Q(+) 
and Q(X). To do this some extra condition is needed. We choose 

P5 [Q(g-'), Q(4)I = - i Q ( k - ' ,  41). 
We denote by a the resulting polynomial algebra of QMO. The purpose of this paper is to 
deduce from PCbP5 that 

Q(4X) = t{Q(4j7 Q(Wl 
where curly brackets round QMO denote the anticommutator. In a previous communica- 
tion (Bloore and Underhill 1973) we gave a plausibility argument for this result. The 
rigorous proof is harder and more interesting than we expected so we think it is useful 
to publish it. 

2. The function F(+, X )  

We first observe that 

Q(4X) = i (Q(4h Q(W) + Q(F(4, X ) )  

[Q($)$ Q(4x)-i{Q(4X Q(x))l = iQ(4X$) -i{Q(4L iQ(X$)l = 0. 

(1) 

where F ( 4 .  X )  E T'O'M, since for any $ E T'O'M, we have from postulates P2-P4 

Here we have used the notation X $  = [ X ,  $1 = Xic'$i2q'. It follows from P2 and P3 
that F ( 4 , X )  is linear in 4 and X. In this section we prove F must satisfy the three 
conditions (3), (4) and (5). In the next section we deduce that F = 0. 

It is evident from equation (1) that 

F(1, X )  = 0. ( 2 )  

The requirement that Q((b$)X) = Q(#($X)) implies that 

Q4$? X )  = 4F($3 X) + F ( 4 ,  $W. (3) 

If we take the commutator of equation (1) with Q(Y) for an arbitrary vector field Y 
we obtain 

(4) YF(4, X )  = F( Y 4 ,  X) + F ( 4 ,  [ Y,  XI). 
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In obtaining equations (3) and (4) we have used the facts 

)IQ(+). {Q($L Q(x)I) = 1Q(4$13 Q(W} 
[Y.4XI = [Y,4lX+4[Y,X]. 

Postulate P3 gives 

[ Q k -  ‘1, Q(4IL) - Q(4)Q(IL)I = 0 

F(4, grad $) + FW, grad 4) = 0. 

which with P5 yields the condition 

( 5 )  

The postulates P&P4 lead only to conditions (3) and (4). It may easily be checked that 
these conditions possess the solution 

F ( 4 ,  X )  = A X 4  (6) 

where E. is an arbitrary constant. We show in 9 3 that this is the only possibility. Some 
extra postulate is thus needed to fix F ,  and we have taken P5. This leads to equation ( 5 )  
which clearly requires I. = 0 if F is given by equation (6). 

One can show that the vanishing of F is equivalent to an apparently stronger version 
of P5, namely 

[Q(s), Q(4)I = -iQ([S, 41) VS E T(2’M (7) 
but we reject making this our postulate because there seems less physical basis for 
equation (7), and also because P5 is strong enough. 

3. Proof that F vanishes 

We make the assumption that the value of the scalar field F ( 4 ,  X) at the point q of M 
depends only on the values and derivatives of 4 and X at q that is, we exclude non-local 
terms like 

j dq’ j dq‘lf,,(q, q’, q ” ) 4 ; i ( q ’ ) x J ( q ” ) .  

The most general form of F is then 
L I  

where L < x to ensure locality. The terms k = 0 in which 4 is undifferentiated are 
excluded by equation (2). Repeated indices are summed from one up to the dimension 
n of the configuration space. The semicolon denotes covariant differentiation with 
respect to the Riemannian connection for the metric g. The coefficients f a r e  the com- 
ponents of fixed tensor fields. Unsymmetrized combinations of covariant derivatives 
of order k of any tensor may be expressed in terms of its derivatives of order at most 
k - 2  using the curvature tensor, so we define the coefficients f to be symmetric in 
i ,  . . . i, and in i k +  . . . i ,  to avoid these ambiguities. These coefficients are then unique. 

We substitute the form (8) into equation (3) and observe that the coefficients of the 
term 

O < m b k < l  4;ii i m $ ; i m +  I irXa;ik+ 1 . i i  
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are fully symmetric in i ,  . . . i,, in i,, . . . i, and in i k +  , . . . i , .  They may therefore be 
equated. (This is not the case for equation (4) : there the indices have to be symmetrized 
by us.) Doing this yields the equation 

In the cases m = 0 and m = k this equation is an identity. For 0 < m < k < I i t  gives 

which implies that 

where k is fully symmetric in i, . . . i f .  Thus the general solution of equation ( 3 )  is 

(9 )  
L 

= ha, i l  l,[(C$X');ll 4 X a ; l l  

where the h are arbitrary tensors symmetric in i, . . . i f .  

I =  1 

We now show that the form (9) satisfies equation (4) only if L = 1 and 

ha i I  = ' *gat1 (10) 

so that F is given by equation (6). If we substitute equation (9) into equation (4) and 
collect together the terms which involve the highest (=  Lth) derivatives of the com- 
ponents of Y we obtain 

yz: l l  irXaC$;B[ - g  k 
zp a.11.. ir. + 'goil'2.pl2 irl. 

The symmetrized part cannot be cancelled by lower order terms, so we may deduce 
that 

gzpka.il.  ir. = Lh, p(iz . i L g i l ) n  

where bracketed indices are symmetrized. The ng trace of this equation is 

n h a  1 1 .  ir = Lh"a(i2 

( L -  l)haai2 i' = 0. 

h, iI i r  = 0. 

i r . g i l ) a  

where n = dim M .  The ai, trace of this equation is 

Hence for L > 1, by equation (1 l), 

Thus equation (9) reduces to at most 

F(#,  X )  = ha,ilC$'irXa. 

Substituting this into equation (4) gives, for all 4, X ,  Y 

C$ ' i ' {X"ybh, , i l ; ,+Xayb 'c (h~ i l g a c - / l a  c g b r l ) )  = 0 
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which holds if and only if ha , I  is given by equation (10). Hence equation (6) is the only 
possibility for F ,  in which case equation ( 5 )  specifies that F = 0. 
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